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PURPOSE: Cohort studies often conduct periodic follow-up interviews (or waves) to determine disease
incidence since the previous follow-up and to update measures of exposure and confounders. The common
practice of excluding nonrespondents from standardized incidence ratio (SIR) analyses of these cohorts can
bias the estimates of interest if nonrespondents and respondents differ on important characteristics related
to outcomes of interest. We propose an analytic approach to reduce the impact of nonresponse in the
analyses of SIRs.
METHODS: Logistic regression models controlling baseline information are used to estimate the
propensity, or the probability of response; the reciprocals of these propensities are used as weights in the
analysis of risk. This is illustrated in the analysis of 15 years of follow-up of a cohort of US radiologic
technologists after an initial interview to assess the risk at several cancer sites from occupational radiation
exposure. We use information from the baseline survey and certification records to compute the propensity
of responding to the second survey. SIRs are computed using Surveillance, Epidemiology, and End Results
(SEER) cancer incidence rates. Variances of the SIRs are estimated by a jackknife method that accounts for
additional variability resulting from estimation of the weights.
RESULTS: Wefind that, in this application, weighting alters point estimates and confidence limits only to
a small degree, thus providing reassurance that the results are robust to nonresponse. This indicates that
results from the analyses excluding the missing data may be slightly biased and weighting helps in reducing
the nonresponse bias.
CONCLUSION: This method is flexible, practical, easy to use with existing software, and is applicable to
missing data from cohorts with baseline information on all subjects.
Ann Epidemiol 2005;15:129–136. � 2004 Elsevier Inc. All rights reserved.
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INTRODUCTION

Response rates have been declining over the years in
population surveys and cohort studies (1, 2). Despite several
studies addressing issues of recruiting, tracking, and retain-
ing cohort members (3–5), a 100% response rate is typically
unachievable. Failure to account for nonresponse can lead to
incorrect inference, the extent of which can depend on the
amount of missing information, the nature of the missing
data mechanism, and the estimates of interest (6).

In this article we address the problems due to non-
response when conducting standardized incidence ratio
(SIR) analyses of multiple-wave cohort studies, where
individuals are contacted at each follow-up (wave) to
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determine disease incidence since the last wave. Subjects in
the cohort may not respond to one or more of the follow-ups,
resulting in the loss of important disease information. This is
in contrast to cohort studies without direct follow-up
contacts where disease incidence is obtained from a disease
registry system and, therefore, disease status is known for
essentially the entire cohort regardless of response at each
wave. However, even these types of cohort studies can have
some missing disease outcome data when subjects move out
of the areas covered by the registry system.

In epidemiological cohort study analyses that prospec-
tively collect time-to-disease data, traditional survival anal-
yses treat missing data due to study dropout or nonresponse
to follow-up as censored observations. For example, in a
two-wave cohort study (with a baseline and a follow-up
interview) subjects with nonresponse to disease incidence
would be excluded from a SIR analysis. This would be
equivalent to a ‘‘complete-case analysis’’ and would ex-
plicitly assume that the missing data is missing completely at
random (MCAR) (6). This is often done despite there being
available covariates measured at baseline (e.g., age, prior
medical conditions) that are predictive of response to the
survey and disease incidence. It is well known that
1047-2797/05/$–see front matter
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complete-case analysis can be potentially biased (6). In this
article, we deal with missing outcome information and how
the results can be biased if the response depends on observed
(or unobserved) covariates.

Weighting and imputation are two methods available to
adjust for nonresponse by using important baseline cova-
riates to conduct missing at random (MAR) analyses (6–9).
Weighting adjusts the contribution of respondents to
represent comparable nonrespondents, while imputation
assigns values to nonrespondents based on the respondents.
In longitudinal studies, covariates measured at baseline for
the entire sample are used by weighting methods to model
the probability of missing in the follow-up (7, 8) or used by
imputation methods to model the assignment of the missing
values. The validity of both types of methods depends on the
missing at random assumptions conditional on the baseline
covariates (6).

When there is a reasonable amount (O 10%) of missing
information, one is not sure how the estimates will be
affected. One way to evaluate the effect is by conducting an
MAR analysis which adjusts for the nonresponse and
compare the results with those obtained from a ‘‘complete-
case’’ analysis.

In this article we propose a weighting approach used in
survey research to reduce bias from nonresponse when
subjects are repeatedly contacted in panel surveys (10, 11).
Wemodel the probability (propensity) of being a respondent
as a logistic function of predictor variables and compute
weights as the inverse of the predicted propensities (2, 12–
17). These weights are used to adjust for nonresponse. We
demonstrate the usefulness of this weighting method by
applying it to a two-wave cohort study in which an SIR
analysis was conducted (18). We suggest a method for
estimating standard errors for the weighted estimates and
for constructing confidence intervals. This approach may
be extendable to analyses of absolute risks but this issue is
beyond the scope of this work.

METHODS

Cohort Description

In 1982, a cohort of 143,517 radiologic technologists was
assembled from the computerized certification files of the
American Registry of Radiologic Technologists (ARRT)

Selected Abbreviations and Acronyms

ARRT Z American Registry of Radiologic Technologists
SIR Z standardized incidence ratio
SEER Z Surveillance, Epidemiology, and End Results
MAR Z missing at random
MCAR Z missing completely at random
ROC Z receiver operating characteristic
(19–21). To be eligible for cohort entry, the technologist
must have been certified by the ARRT for 2 years or longer
between 1926 and 1982, and must have resided in the US
or its territories. A 12-page questionnaire (Survey 1) was
mailed to over 132,000 radiologic technologists who were
presumed to be alive between 1983 and 1989 and had valid
addresses. The questionnaire included items about work
history as a radiologic technologist, radiation protection
methods, lifestyle characteristics, demographic factors, and
health outcomes, including cancer. The response rate to the
baseline survey was 68% (n Z 90,305). Of these 90,305
subjects, 3103 subsequently died, and 70,859 responded to
a second questionnaire (Survey 2) administered between
1995 and 1998. Information was again elicited on various
health outcomes, including cancer site and date of diagnosis.
This study was approved by the human subjects review
boards of the National Cancer Institute and the University
of Minnesota.

The population analyzed in this article is not identical
to the population described elsewhere (22) because we
imposed slightly different start dates for inclusion. Thus, for
example, we have excluded 3 subjects who died before our
start date (January 1, 1983), resulting in 90,302 subjects
rather than 90,305 (22), who we consider to have
responded to Survey 1, and present the weighted results
for the same. Any report of cancer was counted as an
observed case. To supplement incidence histories from
Survey 2, we also ascertained deaths due to cancer in the
interval from death certificates or using National Death
Index Plus system.

This cohort has two kinds of nonrespondents: 1) subjects
who did not respond to Survey 1, and 2) subjects who
responded to Survey 1 but not to Survey 2. Excluding the
subjects in category 1 might affect the generalizability of
results to the entire cohort but will not affect the internal
validity of the results. In this analysis we only adjust for the
nonrespondents in category 2.

Statistical Analysis

Basic Approach and Simple Example.We first illustrate
our approach using a simple hypothetical example. Con-
sider a cohort of 1 million men and 1 million women who
responded to the baseline questionnaire, and are being
followed to assess the risk of a certain type of cancer, C.
Suppose, 30% of the men and 70% of the women respond
to the follow-up survey mailed after 1 year. Let us assume
that 15,000 of the respondents (10,000 men and 5000
women) report having C and that the expected number
of type C cancers from an external source is 25,000 (5000
men and 20,000 women). If we ignored the 1 million
nonrespondents (700,000 men and 300,000 women), we
would have the
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SIR¼
�
Observed

Expected

�
¼
�
15;000

25;000

�
¼0:6

If we assume that for each gender the outcomes areMAR,
then this estimate will be biased because the response rate
depends on gender and the cancer rates also are associated
with gender. We can adjust for the nonresponse by
appropriately weighting the responses. We do this by first
computing the propensity (probability) of response as 0.30
for men and 0.70 for women. The weight for the respondents
is the reciprocal of the propensities, 3.3333 for men and
1.4286 for women. If more than one variable is associated
with response (e.g., age, education, income), we can fit
a logistic regression using all these variables to model and
compute the propensities. The estimated number of type C
cancers after weighting for nonresponse is 33,333 (Z
10,000*3.333) among men and is 7143 (Z 5000*1.4286)
among women. The expected number of typeC cancers after
weighting for nonresponse is 16,665 (Z 5000*3.333) among
men and is 28,572 (Z 20,000*1.4286) among women. Now,
we re-compute the SIR as

SIR¼

X
men

Observed*WeightC
X
women

Observed*Weight

X
men

Expected*WeightC
X
women

Expected*Weight

0
B@

1
CA

¼
�
40;476

45;237

�
¼0:9

As we can see from this simple example of an SIR analysis
when response depends on the same factors that are
associated with the outcome, weighted analyses, where the
weighting is by the inverse of the propensity of response
missingness, can be considerably different from the un-
weighted analysis; by excluding the nonrespondents we bias
the estimate of SIR. In this example, the weighting gives
unbiased estimates of number of observed and expected
cases in the population being considered. In other words, the
weighted SIR will on average be equal to the ‘‘truth’’ where
as the unweighted SIR will not. In reality, the non-
respondents might vary from the respondents on more
characteristics than gender and more so by various risk
factors for the disease of interest and excluding them could
bias the results. Below, we illustrate our approach with
a more complicated real dataset.

Weight Estimation

Information from the ARRT certification records and from
Survey 1 was used to form baseline covariates for the entire
cohort of 90,302 subjects. For each gender, we performed
a step-down (or backward) logistic regression analysis of the
baseline covariates and two-way interactions between the
covariates to obtain a model to predict the probability
(propensity) to respond to Survey 2. Separate logistic
models were fit for each gender because the relationship
between the different covariates and response varied by
gender. Also, step-down selection was used because it pro-
duces more parsimonious models that reduce variability of
the ultimate sample weights derived from the propensi-
ties predicted using these models; increased variability in
the weights usually leads to increased variances in the
analysis (17).

Of the 90,302 subjects who responded to Survey 1, a total
of 3100 died prior to Survey 2, and 16,343 (18%) subjects
who were still alive did not respond to Survey 2. The weight
for an individual who responded to Survey 1 was calculated
as the inverse of the estimated propensity of response.
Because persons who died between Survey 1 and Survey 2
have their disease status essentially completely assessed from
death certificates they were assigned a weight of one. The
weights for the male technologists ranged from 1.00 to 4.95
(median, 1.36; coefficient of variation, 33.72) and the
weights for the female technologists ranged from 1.00 to
5.96 (median, 1.23; coefficient of variation, 30.63). Since
extreme weights can decrease efficiency, we trimmed the
upper 5% of our weights (to 2.95 for the male technologists
and 2.17 for the female technologists) (23, 24). The weights
were then rescaled (i.e., total sample size/sum of the
weights) to sum to the sample size.

Parameter Estimation

We computed the SIRs (unweighted) as the ratio of the
observed number of cases to the expected number of cases,
where the expected number are derived from the Surveil-
lance, Epidemiology, and End Results (SEER) cancer rates
(http://www.seer.cancer.gov). We computed the weighted
SIR for a specific cancer of interest using the following
formula:

SIRw ¼ Ow

Ew

¼

X
j

wjCj

X
a

Sa
X
j

wjTaj

where wj Z weight associated with the jth respondent in
cohort; Cj Z 1 if jth respondent had the cancer of interest
and 0 otherwise; Taj Z person-years for the jth respondent
in the age-sex-race-calendar-year-specific cell ‘‘a’’ and free
of the cancer of interest; and Sa Z SEER rate for the
cancer of interest in the age-sex-race-calendar-year-specific
cell ‘‘a’’. When the wj are all equal to the same value then
we get the unweighted SIR.

Variance Estimation

Because weighting was used to estimate the SIRw, standard
formulas for variance calculation of unweighted SIRs could

http://www.seer.cancer.gov
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not be used. A few of the methods that can be used to obtain
approximately unbiased variance estimates are grouped
jackknife, bootstrap, and Taylor linearization (referred to as
the delta method) (17). Taylor linearization requires
derivation of analytical formulas and specialized software.
However, both the bootstrap and grouped jackknife, which
are based on replicating the analysis with different subsets
of the data, are easily implemented with standard software
but computer intensive. Since the bootstrap method is more
intensive because it requires more replications of the
sample, we used the delete-one-group-jackknife method to
compute the variances. The version of the delete-one-
group-jackknife that we used is described as follows: We
randomly divide the dataset into k (Z 30) approximately
equally sized groups. We use the weights that were cal-
culated for the overall dataset to obtain the SIRw; ĥ.
Corresponding to each of the 30 groups, we create 30 data
sets by leaving out the observations from one group at a time.
Using each of these 30 datasets, we compute a different set of
weights by re-estimating the logistic regressionmodel for the
propensity of response. We then compute weighted
SIRs,ĥðiÞ, iZ 1, ., k, for each of the 30 datasets using
their respective weights. The jackknife variance estimator is
computed as

varðĥÞ¼ðk�1Þ
k

Xk

i¼1

ðĥðiÞ � ĥÞ2

The variance estimates obtained using 30 groups were
very similar to the estimates obtained using 50 groups (data
not shown). Hence, we suggest that the analyst save
computing time by using only 30 groups.

We used this variance to compute Wald-type confidence
intervals. When the number of observed cancers is greater
than zero and less than 51, we propose a modification to the
(1-a) level confidence interval, which accounts for the
additional variability due to the weighting of the SIR
estimator (see Appendix) (25). When the number of
observed cancers was zero, we ignored the weighting, and
calculated the upper confidence limit using the exact
Poisson formula given by Liddell (26). We conducted
limited simulations to evaluate the coverage properties of
the proposed confidence intervals for small number of
events with expected number of events ranging from 1.2 to
38.4. In these simulations we used weights that were
correlated with the outcome, i.e., the weights were in-
formative and changed with the probability of events. We
found that the coverage of the proposed 95% confidence
intervals were close to 95% for larger number of events,
O 4.8 events, and tended to be O 95% for the smaller
number of events (< 2), which was reassuring (data not
shown).
RESULTS

Table 1 displays the distribution of selected characteristics
for the respondents and nonrespondents to the second
survey as well as the subjects who died between the two
surveys. Respondents were proportionately more likely to be
female, Caucasian, younger, and certified as a radiologic
technologist for a longer period (O 20 years). A higher
proportion of respondents to Survey 2 were married, never
smoked, and among the women, were users of oral contra-
ceptives (data not shown).

The logistic regressions were significantly predictive of
response to Survey 2. The variables predictive of response to
Survey 2 among all the male technologists were region, race,
and number of years certified. Additional variables that
predicted response among Survey 1 responders who are male
were marital status, smoking status, and an interaction term
for year first worked by marital status. The variables
predictive of response to Survey 2 among all the female
technologists were region, race, number of years certified,
and an interaction term for race by region. Additional
variables that predicted response among female Survey 1
responders were marital status, smoking status, ever use of
oral contraceptives, and three interaction terms: number of
years certified by marital status, number of years certified by
ever oral contraceptive use, and year first worked by region.
These variables and interactions were used in the logistic
regression analysis to compute the response propensities.

Table 2 displays selected SIR estimates and confidence
intervals obtained using complete case analysis and
weighted analysis. Although there were a few moderate
differences between the nonresponse adjusted analysis and
the complete-case analysis, in general, the two sets of es-
timates did not differ appreciably. Also, the widths of the
confidence intervals did not change much between the two
sets of SIR estimates. This indicates that there was little loss
in efficiency due to the weighting adjustment. The ap-
plication of the weighting method to all 64 cancer sites
showed that compared with the complete-case analysis, the
weighted SIRs were reduced for 52 of the 64 cancer sites (by
1–23%) and increased for 9 sites (by 1–3%). The weighted
SIRs for all cancer sites are presented elsewhere (18).

DISCUSSION

We demonstrate the response propensity weighting method
to adjust for nonresponse in the computation of SIRs in
a multi-wave cohort study of radiologic technologists. We
also describe methods for estimating confidence intervals of
SIRs when the data is weighted for nonresponse.

In contrast to our hypothetical example, in the real
example we find that the weighting alters the point
estimates and confidence intervals only to a small degree,
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TABLE 1. Characteristics of survey respondents and nonrespondents in the US Radiologic Technologist Cohort*, 1983–1998,
who were alive in 1983, and responded to Survey 1 (n Z 90,302)

Total Cohort(nZ 90,302)

Responded to Survey

2 (n Z 70,859)

Nonrespondents

(nZ 16,343)

Died before Survey 2

(nZ 3100)

Characteristic N % % % %

Sex

Female 69,523 77.0 78.7 72.8 59.8

Male 20,779 23.0 21.3 27.2 40.2

Race

Caucasian 85,629 94.8 95.6 92.1 91.4

Others 4673 5.2 4.4 7.9 8.6

Birth year

Before 1925 4630 5.1 3.6 4.2 44.6

1925–1934 7551 8.4 8.3 6.1 21.2

1935–1944 18,749 20.8 21.1 19.7 17.5

1945–1954 41,169 45.6 46.3 48.8 13.5

1955 C 18,203 20.1 20.7 21.2 3.1

Region of residencey

Northeast 21,545 23.9 23.9 24.3 20.4

Midwest 26,802 29.6 30.4 27.1 26.2

South 24,925 27.6 26.9 30.5 28.5

West 17,028 18.9 18.8 18.1 24.9

First year certified as

radiologic technologist

Before 1940 346 0.4 0.2 0.4 5.6

1940–1949 2344 2.6 2.0 1.9 19.9

1950–1959 10,776 11.9 11.6 9.2 34.0

1960–1969 25,878 28.7 29.2 27.0 24.2

1970 C 50,958 56.4 57.0 61.5 16.3

Number of years as

radiologic technologist

! 10 3110 3.4 2.8 6.2 5.3

10–19 8624 9.6 7.7 15.6 19.0

20–29 47,540 52.6 53.8 51.5 31.7

30 C 31,026 34.4 35.7 26.7 44.0

*Some percentages do not add up to 100 due to missing values.
yBased on US Census Bureau definition for geographic region: Northeast Z CT, ME, MA, NH, RI, VT, NJ, NY, PA, DE, DC, MD; Midwest Z IL, IN, MI, OH, WI, IA, KS,
MN, MO, NE, ND, SD; South Z FL, GA, NC, SC, VA, WV, AL, KY, MS, TN, AR, LA, OK, TX; West Z AZ, CO, ID, MT, NV, NM, UT, WY, AK, CA, HI, OR, WA.
thus providing reassurance that the results are likely robust
to nonresponse. Does this mean we can conduct a complete-
case analysis? We could and the results would probably only
be slightly biased. A complete-case analysis of our radiation
cohort makes the strong assumption that the missing disease
status at follow-up is MCAR. In comparison, the analysis
with weighted adjustment makes a weaker assumption of
MAR, i.e., that the missing disease status at the follow-up is
MCAR given the values of the covariates used to model
the propensity of response in the follow-up.

The lack of effect of weighting in our example could be
due to the fact that the weights are not highly related to the
probabilities of disease outcome and therefore would not
have an appreciable effect in altering the point estimates.
The lack of effect on the width of the confidence intervals is
partly due to the large cohort size and partly due to our effort
to control for large variation of the weights by trimming. In
our data the range of weights was not very wide and so the
trimming did not have much of an effect. In general, one
needs to be cautious in trimming the weights because trim-
ming extreme weights to reduce variability might introduce
bias and reduce the advantages of the weighting (23, 24).

Should we conduct an analysis adjusted for nonresponse
and should others conducting similar studies also perform
analyses weighted for nonresponse? We most certainly
recommend this approach because it is a (relatively) simple
method for evaluating the effect of non-response on the
estimates of interest. If there is little appreciable effect,
a complete-case analysis can be reported along with the
information that an analysis for nonresponse did not
indicate bias in the estimates. This type of information
can only strengthen the study’s conclusions. On the other
hand, if weighted estimates are different from the complete-
case method, the investigator would choose to present the
presumably less biased estimates adjusted for non-response,
again adding strength to a study’s conclusions.
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The fact that adjustment for nonresponse had a small
effect on the risk estimates when compared with the
complete-case estimates in the current study does not
necessarily mean that nonresponse bias does not exist.
Nonresponse bias is a function of both the magnitude of
nonresponse rate and how different the nonrespondents are
from respondents. Two reasons for the small effect on the
estimates due to weighting in the present analysis could be
that: 1) the nonrespondents were not very different from the
respondents with respect to factors that affect risk, and 2)
the baseline covariates available for modeling the response
propensity do not strongly predict response. To assess ability
of the propensity models to predict response status, we
computed the area under the receiver operating character-
istic (ROC) curve for each of the models. The ROC curve is
a plot of the sensitivity vs. one minus specificity for all
possible cutpoints that could be used to classify individuals
as respondents when the predicted probability from the
logistic regression propensity models is greater than the
cutpoint (27). The areas under the ROC curves were found
to be 0.63 for the males and 0.59 for the females. These areas
are not much larger than .5, which would result from
a completely random allocation of respondent status,
indicating a low level of prediction (27).

It is known that individuals who are ill from a serious
disease such as cancer, stroke, or HIV can be less likely to
participate in a study than healthier individuals (28–31).
This can lead to nonignorable nonresponse (6) in cohort
studies like the radiologic technologist study where follow-
up interviews at each wave are required of study participants
to determine disease incidence. In this article, we do not

TABLE 2. Selected standardized incidence ratios (SIRs)
and confidence intervals (CIs) for the complete-case and
weighted analyses among 90,302 responders to Survey 1, US
Radiologic Technologist Cohort, 1983–1998

Type of cancer Observed SIR* (95% CI) SIRy (95% CI)

All sites excluding

NMSC1
3453 1.12 (1.09–1.16) 1.09 (1.06–1.12)

All solid tumors 3077 1.10 (1.06–1.14) 1.07 (1.04–1.11)

Salivary gland 8 0.98 (0.42–1.94) 0.91 (0.37–1.86)

Trachea, bronchus, and

lung

307 0.86 (0.76–0.96) 0.77 (0.70–0.84)

Breast (male and female) 972 1.16 (1.09–1.24) 1.16 (1.09–1.23)

Colon cancer 210 1.11 (0.96–1.27) 1.06 (0.94–1.17)

Uterine 291 1.33 (1.18–1.50) 1.34 (1.18–1.51)

Prostate 222 1.01 (0.88–1.15) 1.02 (0.89–1.16)

Melanoma 237 1.57 (1.38–1.79) 1.59 (1.38–1.80)

Thyroid 124 1.62 (1.34–1.93) 1.61 (1.34–1.88)

Urinary bladder 84 0.92 (0.73–1.14) 0.95 (0.71–1.18)

All lymphatic and

hematopoietic system

274 1.23 (1.09–1.38) 1.15 (1.00–1.31)

*Estimates calculated using only the complete cases.
yEstimates calculated using weighting.
1NMSC Z Non-melanoma skin cancer.
consider methods for adjusting for nonignorable non-
response because results of analyses using these methods
can be very sensitive to the choice of the missing data model
and it is almost always impossible to validate the missing
data model.

Although some cohort analyses account for missing
outcomes (such as adjusting the standardized mortality
ratios for unavailable death certificates) (32, 33), we are
unaware of other analyses of cohort data where our proposed
approach has been applied to SIR analysis. When the
nonresponse rate is high or there is a reason to believe the
nonrespondents differ from the respondents, it is recom-
mended that a sensitivity analysis be performed with some
adjustment for nonresponse. Although there are several
alternative imputation methods and several alternative
methods for weighted adjustments for nonresponse (6, 9),
they tend to be more complicated to implement. The
weighting method described in this article can be imple-
mented easily using existing software packages and com-
monly used analysis techniques. Routine logistic regression
analyses are used to obtain the response probabilities and to
compute the weights for adjusting observed number of cases
and accumulated person-years, and standard software is
used to compute SIRs. Other software packages (SAS,
SUDAAN, etc.) can also incorporate weights to obtain
estimates of interest like odds ratios and rate ratios. The
adjustments made for small proportion of cases are very
simple to use and these formulas are available in the
Appendix.

We have illustrated our method for two time points but
this can be adapted to surveys with multiple time points.
Different propensity weighting models can be used to
compute weights for intermittent or monotone pattern
missingness. A few recommendations are: 1) To use baseline
information to predict response to the first follow-up and
then predict response to the second follow-up conditional
on response to the first follow-up using data collected at the
first follow-up and so on; 2) The baseline information can be
used to predict response at any point; 3) A combination of
data collected at all the previous follow-ups including the
baseline can be used to predict response to the follow-up of
interest; and 4) When deaths are known essentially with
certainty and provide complete information about the
disease outcome, then the propensity of response for those
individuals should be set to one. Whatever the method used
to adjust for nonresponse, caution should be exercised to not
greatly increase variance in the estimated measures of effect.

In summary, this article describes a novel application of
an existing survey researchmethod to adjust for nonresponse
in an SIR analysis of a cohort that was queried at multiple
time points. Rather than ignoring the nonrespondents,
particularly if their characteristics differ from respondents,
we advocate incorporating all available information to
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adjust for nonresponse with the aim to improve study
validity.
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APPENDIX
Modifications to Account for Weighting as Well as
the Small Proportion of Events

Here we show the details of the adjustment made to the
Clopper-Pearson (1-a) level confidence interval, which
appropriately accounts for the additional variability due to
the weighting of the SIR estimator, when the observed
number of cancers was greater than zero and less than 51.

Let Ow be the weighted observed number of incidence
cancers and Ew be the weighted expected number of
incidence cancers from a cancer registry. We are interested
in computing confidence intervals for the SIR,ð Ow

Ew
Þ, when

the observed number of events is between zero and 51. We
assume Ew to be fixed because it is based on large numbers
from the registry, and calculate confidence intervals for
p̂w ¼ ðOw=

P
i

wiÞ:

Compute the Jackknife variance of p̂w:

varjðp̂wÞ¼
varjðOwÞ�X

i

wi

�2

Proposed Method:
1. Compute effective sample size

N*¼ p̂wð1� p̂wÞ
varjðp̂wÞ

If;
varjðp̂wÞ

p̂wð1� p̂wÞ=N
!1 then N*¼ N; the sample size:

2. Compute confidence intervals ðPLðx 0Þ;PUðx 0ÞÞ

x 0 ¼ N*p̂w

PLðx 0Þ ¼ n1Fn1;n2ða=2Þ
n2þn1Fn1;n2ða=2Þ

PUðx 0Þ ¼ n3Fn3;n4ð1�a=2Þ
n4þn3Fn3;n4ð1�a=2Þ

where,
n1¼2x 0

n2¼2ðN*� x 0 þ1Þ

n3¼2ðx 0 þ1Þ
n4¼2ðN*�x 0Þ

The (1-a)-percent confidence intervals for Eðp̂wÞare given
by: ��X

i

wi

�
PL

�
x 0
�
;
�X

i

wi

�
PU

�
x 0
��
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